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Abstract

The simultaneous radiation and conduction heat transfer in a semitransparent slab of absorbing—emitting gray
medium is solved in this paper. The refractive index of the medium spatially varies in a linear relationship, and the two
boundary walls are diffuse and gray. A curved ray tracing technique in combination with a pseudo-source adding
method is employed to deduce the radiative intensities on gray walls. Resorting to some of the results presented by Ben
Abdallah and Le Dez, an exact expression of the radiative flux in medium is deduced. The influences on the temperature
and radiative flux fields are examined, which are caused by the refractive index distribution, absorbing coefficient,
thermal conductivity and the boundary wall emissivities. The results display the significant influences of the refractive
index distribution and boundary wall emissivities on the radiative flux and temperature in medium. © 2002 Published
by Elsevier Science Ltd.

Keywords: Simultaneous radiation and conduction heat transfer; Graded index; Semitransparent medium; Curved ray tracing method;
Pseudo-source adding method

1. Introduction

The refractive index has significant influences on the raditive transfer in medium. Spuckler and Siegel [1-3] analyzed
the refractive index effects on the radiative transfer in a single layer of semitransparent medium and in multilayered
regions. Tan and Wang et al. [4] investigated the coupled radiation and conduction heat transfer in a composite of
several semitransparent layers, each with respective constant refractive index. The material structure, the thermal effect
and some others can result in inhomogeneous refractive index distribution in medium, which is usually called the graded
index (GRIN), and often plays important part effect on the phenomena and physical process [5]. Recently, Ben
Abdallah and Le Dez [6,7] investigated the radiative transfer and the combined radiative and conductive heat transfer in
a GRIN semitransparent slab, they developed a curved ray tracing technique to analyze the radiative transfer inside the
medium with two black walls. The temperature and heat flux distributions are reported to show that the GRIN in a
semitransparent medium can greatly influence the inside temperature distribution and heat flux field, as well as the
apparent emission emerging from its surface [8,9].

In this paper, the pseudo-source adding method [10] is employed in combination with the curved ray tracing
technique to solve the radiative transfer in medium characterized by a linear refractive index distribution. Instead of
black boundaries, two diffuse and gray walls are considered. And resorting to some investigation results reported by
Ben Abdallah and Le Dez [8,9], the temperature and radiative flux distributions inside an absorbing—emitting slab of
GRIN gray medium are solved for the simultaneous radiation and conduction heat transfer.
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Nomenclature

reduced refractive index at upside of mesh k,
a = %(ﬁk + 1)

coefficients for discretization

reduced refractive index at downside of mesh
k, by = %(ﬁk + )

coefficients for discretization

coefficients for discretization

slab thickness, m

nth-order exponential integral function
radiative intensity, W/m? sr

radiative intensity of medium, W/m? sr
influence factor

process extinction coefficient

refractive index

reduced refractive index, 7(z) = n(z)/ny
number of meshes

heat flux density, W/m?

spatial position

temperature, K

space coordinate, m

Greek symbols

emissivity of boundary wall
polar angle

A AN~

QlQ

Q

absorption coefficient, m~!

conductivity, W/m K

directional cosine

incident angle on boundary 2

incident angle on boundary 1
Stefan-Boltzmann constant, W/m? K*
generalized optical thickness, T = (kdn,)/
(m — ny)

spatial direction

Superscripts and subscripts

+, -

direction from boundary 1 to boundary 2
(+) or from boundary 2 to boundary 1 (-)
boundary 1, boundary 2

boundary wall, or black body

conduction

mesh order

pseudo-source

radiation

2. Geometrical and physical model

Consider an infinite parallel plane slab of absorbing-emitting but nonscattering gray medium of thickness d, as

illustrated in Fig. 1. The emissivities of the two diffuse gray boundary walls are ¢; and ¢,, and the temperatures are Ty,

and Ty, respectively. The medium is characterized by a constant absorption coefficient «k and a refractive index n(z)

spatially varying in a linear relationship below.

n(z) =ny + (n — ny)z/d,

(1)

where n; and n, are refractive index values of the medium adjacent to the two boundary walls, respectively.

A steady-state temperature field 7'(x) in medium, caused by the simultaneous radiation and conduction heat transfer,

is considered only for the case of n; > n, below, but the results will be also valid for the case of n; < n,.

&1

ny>n,

&

; z )
1
1 d
K
n=n(z) |=
T=T~)
4
2
n, 0
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X

Fig. 1. Schematic diagram of geometrical and physical model.
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3. Radiative flux in medium
3.1. Radiative flux in medium with black boundaries

The radiative flux inside the medium can be expressed as
0= [ hisede )
Q=4n

where I, (s, Q) is the radiative intensity of medium at position s and in direction Q. For a one-dimensional infinite slab,
the azimuthal symmetry leads to

| (20040 =2 [ {ta(eur) = Inle, = lnd (3)

=0

where p = cos { is the cosine of the angle between the z-axis and the propagating direction of the radiation intensity.
For a slab of medium with black boundaries and a linear refractive index distribution, the incoming intensities at a
point z inside the medium have been derived by Ben Abdallah and Le Dez [7]. And an exact expression for the radiative
flux inside the medium was obtained [9] as
1
1 —72(z)

9-(2) = N - B )
exp | —Tn(z) | — [ + 70 pdu

201> (z) _\/—

)
__ n2(d) — n*(z
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where T is the absolute temperature, 7(z) = n(z)/n, is the reduced refractive index and 7 = (xdny)/(n; — na) is the
generalized optical thickness.

If two temperatures 7,; and T}, determined by considering the gray boundary effect, are employed to replace the
boundary temperatures 7;,; and T;, in Eq. (4), then the expression will be valid for a slab of medium with a linear
refractive index distribution and gray boundaries.



2676 X.-L. Xia et al. | International Journal of Heat and Mass Transfer 45 (2002) 2673-2688
3.2. Radiative intensities leaving gray boundary walls

The radiative intensity leaving a gray boundary is the combination of the wall emission and reflection. The pseudo-
source adding method can be employed to solve the radiative intensity leaving a gray boundary.

3.2.1. Radiative intensities 1*(d, ") and I-(0, &)

We introduce 1*(d, &) and 1-(0,¢) to represent the respective radiative intensities incoming on boundary 1 and
boundary 2, without considering the emission or reflection of the boundary walls are included. The symbols & and ¢&
denote the incident angles on boundary 1 and boundary 2, respectively.

The radiative transfer equation in a GRIN medium is

ds

d [I(s,Q) I(s,Q) V(s
|: nz(s) :| +K(S) n2(s) 7K( )Ib( ) (5)

For a ray originating from a point of z = 0, the curvilinear abscissa on its trajectory is [§]

() = = fnz [\/nz(z) — mysin® & — ny cos 5} :% { 72(2) — sin® & — cos 5}, 6)

where T = tny/(ny — ny) = kdny/(ny — ny) and 7(z) = n(z)/n,. Hence,

©) dz. (7)

n
\/72(z) — sin® &

While for that originating from a point of z = d, the curvilinear abscissa on the trajectory is

ds =

[ n2(z) — ny sin* & — n, cos cf’} = % {\/ﬁz(z) — 2(d)sin® & — a(d) cos & |. (8)
So,

ds = A(z) dz. 9)
#2(z) — ii(d) sin® &

Integrating Eq. (5) and considering Egs. (6) and (7), we have

Tcos & — 7y /R2(z) — sin® c’}

#2(z) — sin® ¢

17(0,¢) = n? /()S(d> Kk(s)Iy(s) exp {f /Ox K(s')ds’} ds = Kn%/dﬁ(z)[b(z) o { dz.  (10)

For a ray incidence on boundary 1, if & < arcsin(ny/n;), boundary 2 can be reached by tracing its trajectory in the
reverse direction. Integrating Eq. (5) and utilizing Egs. (8) and (9), it can give

s(d)

1@ g) =i [ oneew -/ . ()5 | s

¢ exp [ — 7i(d) cos & + f\/ﬁz(z) — #2(d)sin® &
/ n(z)l(z) -
0 V() - m(d)sin &

2

= Kn;

dz. (11)

However, when &' > arcsin(ny/n;), tracing its trajectory in the reverse direction can return back to boundary 1 instead
of boundary 2, because of the total reflection at point z* = (7/x)[1 — a(d) sin &]. By integrating Eq. (5) with considering
the integral limit change and utilizing Egs. (8) and (9), it can be deduced as
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Md, &) = /S(d) (s)1 (5) exp {— [(d) k() ds }ds—l—nl /( " )

s(z*) )

s(d) s
X exp [ / k(s')ds" — / K(s’)ds’] ds
s(z%) s(z%)

¢ exp { —tn(d) cos & + f\/ﬁz(z) — 7i2(d) sin’ g”:l
= Kn? / n(z)y(2) d
: V() — w2 (d)sin* &

Z

/d exp { — 7ii(d) cos & — f\/ﬁz(z) — i2(d) sin’ 5/]
+ Kn? ii(z)1y(2) dz. (12)
g e \/ﬁz(z) —2(d) sin® &

3.2.2. Combined radiative intensity
The reflected radiation energy on a diffuse gray boundary wall, will act in combination with the emitted energy from
it. The combined radiative intensities Iy, and Iy, are introduced for two boundaries 1 and 2, respectively.
Integrating I*(d, &) over the hemispherical space to get the total incident energy on boundary 1, and the combined
radiative intensity /y,; can be expressed as

/2
Iop1 =2(1 —81)/ I'(d,&)sin& cos &'dE + m slaT
0

et o/EE @)
=2(1 —¢&)n? ,;z(dH vcn(z)lb(z),u NCEE O dzdu
/ o / exp [—Tn ]Ch {T\/ﬂz —n(d)(1 - )]
41 —&)n 2)l(z dzdp+nieiaT,/n

V(@) — 2 (d)(1 — i)
(13)
and the relationship between z and p can lead to a transformation, which is
exp [f i (d }ch {r\/nz —n2(d)(1 - uz)}
z)Iy( dzd
Moz Vit — 2 (d) (1 — o) H
n-[:i -1
exp [ - fﬁ(d)u} ch {WW(Z) —2@)1 - uz)}
b(z dudz. 14
_Ld - (@ TR @ u (14)

Hence, Eq. (13) can be rewritten as

/ / exp | — )+ o/~ @1~ )]
]Opl = 2 1 — 81 T ]b ) deZ

\/n2 _n2 1 _‘u2)

d

2 d}
d ) exp {— th(d)p — T\/i2(z) — n2(d)(1 — uz)}
+2(1 —g))n? kn(z)ly(z dpdz
e | ] o an —— "

(d)

+nleoT)/m. (15)
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Similarly, integrating 7~ (0, ¢) over the hemispherical space, the total incidence energy on boundary 2 can be obtained
and the combined radiative intensity will be

/2
Iy =2(1 — &) / I7(0,¢) sin écos EAE + nzszaT

dzdy + nye0Th /T (16)

exp T —T/02(z) — 1 + 12
2(1 — &) z)1(
2) iz 2(z) — 1+ 12

By the above deductions, the medium emission has been transformed to be included in the combined radiation from the
two boundaries. Thus, the absorbing—emitting medium can be dealt with as an absorbing one in the following way.

3.2.3. The first pseudo-source intensity

The combined radiative intensity /oy, from boundary 2 propagates through the medium to reach boundary 1, and
then is reflected there. On boundary 1, the reflected intensity will act together with the combined radiative intensity Zop,
their sum is denoted by /;,; and named as the first pseudo-source intensity from boundary 1. Similarly, the combined
radiative intensity /op; from boundary 1 propagates through the medium to reach boundary 2 and then is reflected. The
sum of the reflected intensity and the combined radiative intensity /oy, on boundary 2 is denoted by /;;,, and named as
the first pseudo-source intensity from boundary 2. Then, the following expressions can be found:

$ipt = Iop1 + Iopoka (1 — &), (17)
Ly = Iopo + Iopiki (1 — &), (18)
where k; and k, are the influencing factors of the two boundary walls, as

foms'" /m) 2 exp [ f K(S) ds} sin & cos &' d¢’
lf(lfal)fﬂ/z. 2exp[ Zf’(d> ds] sin & cos &'d¢

k=

arcsin(ny /ny)

(1/7>(d)) [y 2pexp {m — /1 n2(d) — 1} du
- , (19)

A2 (d)—1

= (l—e) fy ™ Zuexp[foﬁ(d),u] du

/2 5(d) 1
ky = / 2exp [—/ K(s) ds] sin ¢cos £dE = / 2uexp [iu — T2 +r*(d) — 1| du. (20)
0 (i 0

5(0)

The two formulae above can be finally reduced as

b= E; [en(a) -] - W%B {f 2(d) — 1} + Wﬂ?—%e*m
tlad) —1] +1
_T[n( )%2 ] + eff[i:(d)—l]’ 21
- {1 + Zf\/ﬁm} N
(k2/ﬁ ( ))/ 1- (1 - gl) Zfzﬁz(d) (22)

where E,(x) is a nth-order exponential integral function.

3.2.4. Radiative intensities leaving gray boundary walls
The radiative energy leaving a boundary wall can partly return back to it after propagating through the medium and
being reflected by the other boundary. A process extinction coefficient, k, is introduced here to represent the quotient of
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the returning energy to that leaving a boundary, i.e., K; and K, for boundary 1 and boundary 2, respectively. The
following expressions can be derive for them:

2 s(d)
K = (1 — &)k?/#(d) +/ 2exp { 2/ K(s)ds] sin & cos &' d¢&
s(

arcsin(ny /ny ) s(z%)

/2

= (1 — &)i3/A*(d) + / 2exp [— 277i(d) cos é’] sin & cos &' d¢&’

arcsin(ny /ny)

/2 (d)-1
n(d)
= (1 — e)k2/7*(d) + / 2uexp [— 2fﬁ(d)u} du
0

1— {1 + 2@/;%} o2/ (d)-1

—(1_ 222
=l -el/wid)+ 2052 (d) ’ (23)
(1 —e)ks/m*(d )
K, =
Jarcsnn(nz/na Zexp [ Zf( dS:| Slné COSC df
_ (1 —&)k3/n*(d) 3 (1 — &) /7(d) »
) ! - - ]m\/m' TR
1—(1—e)fy ™ 2uexp [— Zfﬁ(d)u} dp 1—(1—g)—t e

The radiative intensity leaving a boundary wall is the comprehensive contributions of medium emission and ab-
sorption as well as the boundary wall emission and reflection. /; and I, are introduced to denote the radiative intensities
leaving the two boundaries, respectively, and we have

[lpl
[ =— P 25
TIoK (1 —e)’ (25)
IlpZ
L=— " 26
T K(1—&) (26)

The radiative intensities /; and 7, can be regarded as that emitted from two pseudo-black walls with temperatures of T},
and Tj,,, respectively, which are

nl
T, = =L 27
! \l on?’ (27)

nl,
Ty = 4 [—. 28
p2 Gn% ( )

3.3. Solution to radiative flux in medium

The medium is cut out into isothermal slices labeled k, of equal depth Az and with center z;, for 2<k<N — 1, N
being the total number of meshes (gray interfaces included), as illustrated in Fig. 2. Thus, Iy, can be exactly calculated
for a linear refractive index, leading to the formal expression

P )
Opl — T £

where Tl = sz, TN = Tb1>A1 =0 and AN =£. For2<k<N7 I,Ak is
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Fig. 2. Discretization of the slab.
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+

* 2
a; — 1E5|T(\/n3 — 1+ ai — 1)| — /b7 — 1E5|T(\/A — 1 + /b — 1)
- ] Tn> / n—1 ] -
d d
al — 1E4|T(\/0 — 1+ ai — 1)| — \/bf — 1E4|T(\/A — 1+ /bl — 1)
+ — = —— = = ) (30)
Tn;
where 7; is the refractive index value at the center of mesh &, and a; = %(r’zk + A1), by = %(izk + A1)
Similarly, Iy, can be expressed as
2o &
zopzszckT;h (31)

k=1

where ) = Tp, Ty = T4, C; = &, Cy = 0. And for 2<k<N -1, C; is

C=2(1 — 82){ (ar — 1)E4 [‘f(ak - 1)} — (by — 1)E,4 [f(bk . 1)]

— a3 [f(ak - 1)} + byEs [‘f(bk - 1)}

T

Es [‘f(ak - 1)] — Es [f(bk - 1)] Vi —1E, (f\/ai - 1) — /B~ 1E (f\/b,z - 1)
* 7 Bl 7

s
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The solutions could be obtained from Egs. (29) and (31) as

N _
A/(+Ck(1*81)k2/n2(d) 4
T4 = T 33
pl kz:l: lle(lff’l) K ( )
NG+ A1 — &)k (d
T gl (L —e)hn’(d) (34)

1—K2(1—82) ke

k=1

For a constant refractive index, the following expressions can be derived:

Ay = 2(1 - gl){& |:Kd— x(k—o—%)Az} B {Kd_ 1<<k—%)AZ} } (35)
Ck:2(l—sz){E3{K(k—%)Az] _E3[K(k+%)Az”, (36)

kl = kz = 2E3(Kd), (37)
Ky = 4(1 — &)E2(kd), (38)
Ky = 4(1 — &))E2(kd). (39)

In the medium with a linear refractive index, the radiative flux at point z; would be given as
N
q; =20m Y BT}, (40)
=1

where T} = T, Tv = T,1. And it can also be written as

N-1
a1 = (B, +BY,C, + By, ) T + (B),Cl + By )T + (B),Cy + By Ay) T (41)

=

For the case of a linear refractive index, B); has been deduced in [6].

3.4. Results and discussion on radiative flux at radiative equilibrium

The results of radiative flux at radiative equilibrium are presented in a reduced form as g, = 4q;/(n; + nz)2 for a
linear refractive index distribution or g, = g;/n* for constant refractive index [6]. The results of reduced radiative flux in
medium with a constant optical thickness and black boundaries are shown in Fig. 3, wherein eight linear refractive
index distributions and a constant one are considered. It should be pointed out that the results for the linear refractive
index distribution of n; = 1.8, n, = 1.2 and for a constant refractive index have also been presented in [6]. The cor-
responding results in this paper and that reported in [6] exactly agree with each other. It is easy to see, in Fig. 3, that the
radiative flux inside a one-dimensional semitransparent slab is significantly influenced by the refractive index distri-
bution, but with a linear refractive index, it keeps constant for the fixed values of n; and n,, and does not change when
the values of n; and n, are interchanged.

The influences of optical thickness xd and the boundary emissivities on the radiative flux at radiative equilibrium are
shown in Fig. 4. The results for both of the linear refractive indexes and the corresponding constant refractive index are
shown in Fig. 4. Comparisons with the results in [6] are presented in Fig. 4(a) for black boundaries considered, and
exact agreements are shown for the cases of kd = 0.01, 0.1, 1 and 10. The radiative flux monotonously decreases with
increasing optical thickness, the refractive index being constant or linearly distributed, and it is independent of
boundary emissivities. For any optical thickness, however, the radiative flux can be greatly influenced by the refractive
index, and the effect of refractive index closely relates to the two boundary emissivities. When the two boundary
emissivities are same, see Figs. 4(b) and (c), the radiative flux keeps constant as the values of n; and n, of a linear
refractive index distribution are interchanged, though the temperature distribution in medium changes greatly [11]. For
two different but respectively constant boundary emissivities, comparing curve 2 with curve 3 in Fig. 4(d) or (e), the
radiative flux changes greatly as the values of n; and n, changed. When the values of n; and n, are interchanged along
with the interchanging of the two boundary emissivities, however, the radiative flux keeps constant, as compared curve
2 in Fig. 4(d) with curve 3 in Fig. 4(e) or curve 3 in Fig. 4(d) with curve 2 in Fig. 4(e).
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Fig. 3. Reduced radiative flux at radiative equilibrium inside a slab with a constant optical thickness (7,; = 1500 K and 7;,, = 1000 K;
kd=1, ¢ =¢=1.0; curves: 1. =16, m=14 or nmy=14, n,=16; 2. my =17, =13 or ny =13, n,=1.7; 3.
}’11:1‘87 I’lg:l‘z or n1:1.2, I’lz:l‘g; 4. n1:l‘9, l’l2:1.1 or }’11:1‘17 n2:1‘9; }’l1:}’l2:1.5).

4. Simultaneous radiative and conductive heat transfer in medium
4.1. Governing equation and discretized solution

At steady-state, the divergence of the heat flux in medium equals zero. For the simultaneous radiation and con-
duction heat transfer, it can be written as

div(g: + ¢.) =0, (42)

where ¢, and ¢. are the heat fluxes transferred by radiation and conduction, respectively. For an one-dimensional
problem, the divergences of them will be

divg, =k {4n2(z)0'T4(z) —2n /:o [In(z, ) + I (2, — ,u)]du} , (43)
divg. = —)vc(l;—{. (44)

The discrete form of Eq. (43) could be

divas  dxon? [(1 _ByC, Byd, B, ) 4 BuCi er Budi s BuCy + By 14

/ 2

i—1 N-1
—EZMQ+?%+%ﬁ—§:%Q+?m+%ﬁ, (43)

k=2 k=j+1

where the coefficients By; have been presented in [7]. By the finite difference method, Eq. (44) can be discretized as

12T2 — 8Tb2 — 4T3

divg. = 2 AR for j =2,

. 2T, — T,y — T;

divg. = /1*12’“ for 3<j<N -2, (46)
12Ty, —4Ty_, — 8T

divg, = 21— 3A21§2 ® for j=N—1.

Substituting Eqgs. (45) and (46) into Eq. (42), we get the discrete energy equation of the simultaneous radiation and
conduction in medium. By linearizing T;‘ in Eq. (45), and solving the algebraic equation set by an iterative solution, the
temperature 7; induced by the simultaneous radiation and conduction in medium can be finally obtained, and then, the
radiative flux of the simultaneous radiation and conduction heat transfer can be determined from Eq. (41).
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4.2. Temperature and radiative flux of simultaneous radiation and conduction

Based on the deduction above, the steady-state simultaneous radiation and conduction heat transfer in a slab of
semitransparent medium is solved as follows. The thickness of the slab keeps a constant value of 1 cm, and the two
boundary temperatures are 7,; = 1500 K and 7;,, = 1000 K, respectively. Four couples of medium thermal conduc-
tivity and absorptive coefficient combinations are considered. For each combination, a constant and two linear re-
fractive index distributions are discussed. The values of n; and n, of a linear refractive index distribution are
interchanged to obtain the other linear refractive index distribution, and the constant refractive index is the mean value

250000 140000
200000 110000
150000 -
E £ 80000
-~
2 100000 e
o S 50000
50000
ol - - - 20000
0.01 0.1 1 10 :
@ xd (b)
26000 57000
23000 48000
. 20000 _~ 39000
£ £
Z 17000 £ 30000
S R
14000 21000
' - 12000
: 1008401 0.1 1 10 0.01 0.1 1 10
(¢ xd (d) xd
57000
48000
39000
E
230000
e
21000
12000 - .
0.01 0.1 1 10
(e) Kd

Fig. 4. Effects of optical thickness and refractive index distribution on the reduced radiative flux at radiative equilibrium (7,; = 1500,
Ty, = 1000; curves: 1. n=1.5;2.ny =18, n, =1.2; 3. ny = 1.2, n, = 1.8).
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of n; and n,. Both black and gray boundary walls are considered for each case above. The temperature and radiative
flux results are shown in Figs. 5 and 6, respectively. It is necessary to point out that, the results for the medium with two
black boundaries and a linear refractive index distribution of n; > n, or a constant one have been presented also in [6],
and the results agree well each other, see Fig. 4(1) for example.
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Fig. 5. Temperature distribution of the simultaneous radiation and conduction heat transfer in a slab (7;; = 1500 and 7;,, = 1000;
solid lines: n = 1.5; dotted lines: n; = 1.8, n, = 1.2; dashed lines: n; = 1.2, n, = 1.8).
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Fig. 5 (continued)
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Fig. 5 shows that, the combination of thermal conductivity and absorptive coefficient, the refractive index distri-
bution and the wall emissivities have significant influences on the temperature distribution in medium. Increasing the
wall emissivity of the high temperature boundary and/or decreasing that of the low temperature boundary can increase
the temperature level in medium. The influence of boundary wall emissivities on temperature distribution is very ob-
vious for a moderate absorptive coefficient and a small thermal conductivity combination (Fig. 5(c)), and becomes

almost neglectable for high absorptive coefficient coupled with not very small thermal conductivity (Fig. 5(d)).
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The temperature in the medium with n; > n, is higher than that with n; < n,, and the temperature curve in the
medium with a constant refractive index of the mean value of n; and n, locates between the two temperature curves
(Figs. 5(a)—(d)). It may be explained as the total reflection inside the medium differing under different linear refractive
index. Because of the total reflection inside medium, for the case n; > n,, the higher temperature boundary (boundary
1) has greater influences not only on the downward radiation transfer from boundary 1 toward boundary 2, but also on
the upward radiation transfer from boundary 2 toward boundary 1, and thus, the temperature level heightens. Simi-
larly, the linear refractive index with n; < n, will enhance the influence of low temperature boundary (boundary 2) on
radiation transfer and results in the drop of temperature level.
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Fig. 6. Reduced radiative flux distribution of simultaneous radiation and conduction heat transfer in a slab (7, = 1500 and
Ty, = 1000; solid lines: n = 1.5; dotted lines: n; = 1.8, n, = 1.2; dashed lines: n; = 1.2, n, = 1.8).
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Fig. 6 (continued)

As shown in Fig. 6, the radiative flux distribution in medium shows complicated dependency on the combination of
thermal conductivity and absorptive coefficient, the refractive index distribution and the wall emissivities. When the
thermal conductivity and absorptive coefficient are both small, the radiative flux varies slightly and is somewhat like the
distribution at radiative equilibrium (Fig. 6(a)). For the combination of a small thermal conductivity and a moderate
absorptive coefficient, the radiative flux distribution is almost flat in the central region of the medium (see Fig. 6(c)). As
the thermal conductivity increases, the coupling effect of radiation and conduction becomes obvious, and the radiative
flux distribution changes greatly in the whole region of the medium.
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5. Conclusions

By using the curved ray tracing technique in combination with the pseudo-source adding method, an exact ex-
pression of the radiative flux in semitransparent medium is deduced. The simultaneous radiation and conduction heat
transfer in a linear refractive index medium with diffuse and gray boundary walls is solved. The conclusions can be
drawn as following:

(1) The refractive index distribution, absorbing coefficient, thermal conductivity and the boundary wall emissivities
are combined to significantly influence the radiative flux and temperature distributions in the medium.

(i) The radiative flux distribution of a simultaneous radiation and conduction in the medium differs greatly from
that at equilibrium. The latter is constant in medium for a given case, while the former usually varies nonlinearly.
(iii) Compared with the effect of a constant refractive index, a linear refractive index can either heighten or lower
the temperature in medium.

(iv) The influence of boundary wall emissivities on temperature distribution is very significant under a moderate
absorptive coefficient and a small thermal conductivity combination, and becomes almost neglectable under a
great absorptive coefficient and a not very small thermal conductivity.

Acknowledgements

The project is financially supported by the National Natural Science Foundation of China (Grant No. 50076010),
and the Multidiscipline Scientific Research Foundation of Harbin Institute of Technology (Grant No.
HIT.MD2000.16).

References

[1] C.M. Spuckler, R. Siegel, Refractive index and scattering effects on radiative behavior of a semitransparent layer, J. Thermophys.
Heat Transfer 7 (2) (1993) 302-310.

[2] R. Siegel, Refractive index effects on local radiative emission from a rectangular semitransparent solid, J. Thermophys. Heat
Transfer 8 (3) (1994) 625-628.

[3] R. Siegel, C.M. Spuckler, Variable refractive index effects on radiation in semitransparent scattering multilayered regions,
J. Thermophys. Heat Transfer 7 (4) (1993) 624-630.

[4] H.P. Tan, P.Y. Wang, X.L. Xia, Transient coupled radiation and conduction in an absorbing and scattering composite layer,
AIAA J. Thermophys. Heat Transfer 14 (1) (2000) 77-87.

[5] Y.T. Qiao, in: Graded Index Optics, Science Press, Beijing, 1991, pp. 1-8 (in Chinese).

[6] P. Ben Abdallah, V. Le Dez, Radiative flux field inside an absorbing—emitting semitransparent slab with variable spatial refractive
index at radiative conductive coupling, J. Quant. Spectrosc. Radiat. Transfer 67 (2) (2000) 125-137.

[7] P. Ben Abdallah, V. Le Dez, Temperature field inside an absorbing—emitting semitransparent slab at radiative equilibrium with
variable spatial refractive index, J. Quant. Spectrosc. Radiat. Transfer 65 (4) (2000) 595-608.

[8] P. Ben Abdallah, V. Le Dez, Thermal emission of a semitransparent slab with variable spatial refractive index, J. Quant.
Spectrosc. Radiat. Transfer 67 (3) (2000) 185-198.

[9] P. Ben Abdallah, V. Le Dez, Thermal emission of a two-dimensional rectangular cavity with spatial affine refractive index,
J. Quant. Spectrosc. Radiat. Transfer 66 (6) (2000) 555-569.

[10] Y. Huang, X.L. Xia, H.P. Tan, et al., Apparent emitting properties of a semi-transparent medium layer with specular semi-
transparent surface and diffuse substrate, Acta Energiae Solaris Sinica 20 (2) (1999) 116-121 (in Chinese).
[11] Y. Huang, X.L. Xia, H.P. Tan, Temperature fields inside an absorbing-emitting semi-transparent slab at radiative equilibrium

with linear graded index and gray walls, J. Quant. Spectrosc. Radiat. Transfer (in press).



